INTRODUCTION TO PHYSICAL CHEMISTRY - 2017/8

Module code: CHE1036

Module provider

Chemistry

Module Leader

RIDGE K Dr (Chemistry)

Number of Credits

15

ECT Credits

7.5

Framework

FHEQ Level 4

JACs code

F170

Module cap (Maximum number of students)

N/A

Module Availability

Semester 2

Overall student workload

Independent Study Hours: 83

Lecture Hours: 33

Tutorial Hours: 4

Laboratory Hours: 36

Assessment pattern

Assessment type Unit of assessment Weighting
Examination EXAM - 1.5 HOURS 60%
Coursework PRACTICAL WORK LABS AND REPORTS 30%
Coursework TUTORIAL WORK 10%

Alternative Assessment

No alternative to Examination and tutorial exercises Failure of practical unit of assessment will be required to attend during the Late Summer Assessment period and complete a defined practical course.

Prerequisites / Co-requisites

N/A

Module overview

This module gives an introduction to fundamental laws that govern the behaviour of matter through an understanding of the properties of matter at molecular, atomic and subatomic level.

Module aims

To provide an understanding of the principles underlying elementary quantum theory and their experimental foundation.

To introduce the basic principles of molecular spectroscopy.

To provide a basic understanding of thermodynamics and kinetics and their relevance to chemistry in the real world.

Learning outcomes

Attributes Developed
Understand the underlying concepts and principles of the Kinetic Theory of Gases KCT
 Understand the underlying concepts and principles of quantisation KCT
Understand the underlying concepts and principles of chemical thermodynamics KCT
Understand the underlying concepts and principles of reaction kinetic KCT
Interpret and present simple data for a range of processes and appreciate different approaches to solving practical and theoretical problems.  CT
Carry out a range of appropriate experiments, interpret the results and draw conclusions, communicating the outcomes in written form with a structured and coherent scientific argument. CPT

Attributes Developed

C - Cognitive/analytical

K - Subject knowledge

T - Transferable skills

P - Professional/Practical skills

Module content

Indicative content includes:



Black body radiation. Planck distribution. 1-D Schrodinger equation. Born. Quantization. Quantum numbers. Bohr. Wave function. Probability density. Atomic orbitals. Eigen functions. Radial wave functions. Radial distribution functions. Atomic spectra (hydrogen) and energy levels. Ionization energies and electron affinities. Aufbau. Hybridisation. Bonding and antibonding orbitals. Bond order. Duality of matter and the de Broglie hypothesis. Heisenberg uncertainty principle. Particle in a box model.


Colour of conjugated molecules. Rigid rotor and microwave spectra of diatomic molecules. Harmonic oscillator. Gas-phase IR spectra of simple diatomic molecules. Electronic excitation and the fate of excited species. Degeneracy. Vibrational motion. Singlet and triplet states. Selection rules. Multiplicity. Diatomic molecules. Electron spin. Effect of magnetic fields. Populations, intensity and widths of spectral lines.


Kinetic theory of gases. Motion of gases. Chemistry in space. ZAB collision frequency. Molecular velocity RMS velocity. Nature of kinetics. Simple and complex reactions. Reaction rates and rate constants, orders, molecularity and mechanisms. Rate laws. Differential rate equations. Integrated rate equations and half-life equations for 0, 1 and 2nd order reactions. Arrhenius and the effect of temperature on reaction rates. Experimental techniques for measurement of rate, rate constant and activation energy.


Equations of state. Ideal gas. Gas laws. Molar volume. Avogadro’s constant. Thermodynamic variables: intensive and extensive. Partial pressures. Conservation of energy. Laws of thermodynamics. ΔU. Cp. Cv. ΔH. ΔHo. Calorimetry. ΔrH, ΔrS, ΔrG, Le Chatelier’s Principle. Van’t Hoff equation. Adiabatic processes. Hess’ law. T-dependence of ΔH. Kirchoff law. Joule-Thompson effect. Chemical equilibria involving gases and solids, and in solution. Spontaneous reactions.



 

 

Methods of Teaching / Learning

The learning and teaching strategy is designed to:


present the theory and foster enquiry and consolidation through discussion,

enhance problem solving skills,


enhance practical (laboratory) skills including the ability to write scientific reports


give a comprehensive understanding of the standards required for successful completion of the module



The learning and teaching methods include:

28 hours formal lectures and 6 hours of pre-practical lectures

36 hours of practical classes

4 hours of tutorials

 

Assessment Strategy

The assessment strategy is designed to provide students with the opportunity to demonstrate that they have successfully met the learning outcomes of the module (see above).

 

Thus, the summative assessment for this module consists of


Coursework (30 % of the module): Assessment of practical (experimental) skills and the ability to write scientific reports (LO2, LO3)
Coursework (10 % of the module): Written solutions to set problems (LO1, LO2)
Examination (60 % of the module): Assessing LO1 and LO2


 

Formative assessment

Formative assessment is provided for all types of summative assessment mentioned above. Thus two of the six experimental sessions and the laboratory reports related to them are formatively assessed.

Formative assessment is also provided both in tutorials and also in lectures aiming to enhance the ability to solve problems, as well as the understanding of what constitutes a full and well-structured answer. Thus, the work for two of the four tutorials is formatively assessed and opportunities for problem-solving during ‘lecture-time’ allow group work and discussion.

 

Feedback

Feedback is provided orally throughout the duration of the module in every opportunity (lecture, tutorial, practical session) including one-to-one meetings arranged on student’s request.

 

Feedback is provided in writing


After completion of each of the first two laboratory reports  and


After completion of work set for each of the first two tutorials

Reading list

Reading list for INTRODUCTION TO PHYSICAL CHEMISTRY : http://aspire.surrey.ac.uk/modules/che1036

Please note that the information detailed within this record is accurate at the time of publishing and may be subject to change. This record contains information for the most up to date version of the programme / module for the 2017/8 academic year.