CIRCUITS, CONTROL AND COMMUNICATIONS - 2017/8

Module code: EEE2033

Module provider

Electrical and Electronic Engineering

Module Leader

FOH CH Dr (Elec Elec En)

Number of Credits

15

ECT Credits

7.5

Framework

FHEQ Level 5

JACs code

H640

Module cap (Maximum number of students)

N/A

Module Availability

Semester 1

Overall student workload

Independent Study Hours: 117

Lecture Hours: 33

Assessment pattern

Assessment type Unit of assessment Weighting
Examination 2-HOUR, CLOSED-BOOK WRITTEN EXAMINATION 90
Coursework TWO SHORT PROBLEM-BASED ASSIGNMENTS SUBMITTED VIA SURREYLEARN (5% EACH) 10

Alternative Assessment

Not applicable: students failing a unit of assessment resit the assessment in its original format.

Prerequisites / Co-requisites

None.

Module overview





Expected prior learning:  Learning equivalent to Year 1 of EE Programmes.




Module purpose:  This module is divided into two parts (Circuit & Control Systems and Communications & Networking) each of which build on the concepts and tools introduced in Year 1.




Module aims

the engineering and scientific context of the concepts introduced

how the concepts explain circuit and system behaviour

how to use this knowledge for circuit, control and communication system design

Learning outcomes

Attributes Developed
Handle 1st and 2nd order circuits and systems in the complex frequency domain and analyse the transient and steady-state response. CP
Model simple physical systems in the time and complex frequency domains. KC
Apply simple methods to the design of systems with feedback. CP
Use Laplace transforms, differential equations, transfer functions and block diagrams to analyse simple control systems. CP
Develop a working knowledge of the properties of signals and modulation schemes. K
Explain the basic concepts underlying the design and operation of the communication networks. K

Attributes Developed

C - Cognitive/analytical

K - Subject knowledge

T - Transferable skills

P - Professional/Practical skills

Module content

Indicative content includes the following.

 

 Part A – Circuit & Control Systems  (Dr. Neil Emerson)

 

[1 - 4]     Complex frequency analysis: Poles and zeros, natural response, forced and complete 

              response, transfer functions. Laplace transforms.

[5 - 6]     Frequency response, filter circuits, filter response from poles and zeros, Bode plots.

[7 - 9]     System modelling and analysis: Time and complex frequency domain modelling of

              linear systems, transfer functions, system modes and stability, step responses of 1st and 2nd order systems.

[10 - 11] Introduction to control principles, the Laplace transform, poles and stability.

 

[12 - 13] Feedback: Advantages of closed-loop control, sensitivity analysis, examples of feedback systems.

[14 - 15] Simple methods of feedback design: Steady-state error and integral action, proportional plus integral (PI) controllers, position control systems and derivative action.

[16 - 17] Revision

 

 

Part B - Communications & Networking  (Dr. Chuan Heng Foh)

 

[1 - 6]     Revision of Fourier Transform; Elements of modulation: Amplitude Modulation, Frequency Modulation and Digital Modulation. 

[7 - 10]   Introduction to Networking, Concept of Protocols, OSI reference model and data link layer.

[11 - 15] Introduction to Internet technology (including IP protocol, IP addressing, TCP, UDP).

[16]        Revision

 

Methods of Teaching / Learning

The learning and teaching strategy is designed to provide useful pointers for deeper learning of the topics listed in the module content. This is achieved through a series of lectures and other learning material like slide-sets, notes, online videos, tutorial sheets with model solutions, numerical and design problems with model solutions. Students are encouraged to do pre-session preparation and attempt the assignments on SurreyLearn. Class discussions are used to identify any difficulties faced by the learners and then provide more learning material using online resources at SurreyLearn system.

 

Learning and teaching methods include the following.



Lectures: 3 one-hour lecture sessions per week x 11 weeks


Two SurreyLearn based assignments to guide the students to prepare before the lecture sessions (each assignment requiring 5 hours of guided study and 3 hours of written work)


Class discussion: Average 20 minutes every week during the lectures


Online vidoes, notes, tutorials with model solutions and other learning materials



 

Assessment Strategy

The assessment strategy for this module is designed to provide students with the opportunity to demonstrate that they have achieved all the intended learning outcomes. The summative assignments are designed to encourage the students to come prepared in every lecture and free up the time for class discussions, enquiry based learning and formative feedback in the class. The written exam will assess their understanding of analysis techniques for 1st and 2nd order circuits and systems. The exam will also assess their conceptual understanding and ability to give arguments in favour of specific design choices for the communication links and networks. This exam will also assess their abilities to design as well as analyse the control systems. The exam will include a combination of conceptual questions, numerical problems and design problems to assess the student understanding.

 

Thus, the summative assessment for this module consists of the following.



Two Surrey Learn based assignments. Expected time to complete the assignment is 5 hours of guided study and 3 hours of written work to be submitted through SurreyLearn. These assignments will be due according to the following schedule:


Assignment 1: due week 5


Assignment 2: due week 9


2-hour, closed-book written examination at the end of the module teaching during the examination week

 

Any deadline given here is indicative. For confirmation of exact dates and times, please check the Departmental assessment calendar issued to you.

 

Formative assessment and feedback

For the module, students will receive formative assessment/feedback in the following ways.


During lectures, by question and answer sessions


During tutorials/tutorial classes


By means of unassessed tutorial problem sheets (with answers/model solutions)



 

Reading list

Reading list for CIRCUITS, CONTROL AND COMMUNICATIONS : http://aspire.surrey.ac.uk/modules/eee2033

Programmes this module appears in

Programme Semester Classification Qualifying conditions
Electronic Engineering MEng 1 Compulsory A weighted aggregate mark of 40% is required to pass the module
Electrical and Electronic Engineering MEng 1 Compulsory A weighted aggregate mark of 40% is required to pass the module
Electronic Engineering BEng (Hons) 1 Compulsory A weighted aggregate mark of 40% is required to pass the module
Electrical and Electronic Engineering BEng (Hons) 1 Compulsory A weighted aggregate mark of 40% is required to pass the module
Electronic Engineering with Space Systems BEng (Hons) 1 Compulsory A weighted aggregate mark of 40% is required to pass the module
Electronic Engineering with Space Systems MEng 1 Compulsory A weighted aggregate mark of 40% is required to pass the module
Electronic Engineering with Nanotechnology BEng (Hons) 1 Compulsory A weighted aggregate mark of 40% is required to pass the module
Electronic Engineering with Nanotechnology MEng 1 Compulsory A weighted aggregate mark of 40% is required to pass the module
Electronic Engineering with Computer Systems BEng (Hons) 1 Compulsory A weighted aggregate mark of 40% is required to pass the module
Electronic Engineering with Computer Systems MEng 1 Compulsory A weighted aggregate mark of 40% is required to pass the module
Computer and Internet Engineering BEng (Hons) 1 Optional A weighted aggregate mark of 40% is required to pass the module
Computer and Internet Engineering MEng 1 Optional A weighted aggregate mark of 40% is required to pass the module
Communication Systems BEng (Hons) 1 Compulsory A weighted aggregate mark of 40% is required to pass the module
Communication Systems MEng 1 Compulsory A weighted aggregate mark of 40% is required to pass the module
Electronic Engineering for Medicine and Healthcare BEng (Hons) 1 Optional A weighted aggregate mark of 40% is required to pass the module
Electronic Engineering for Medicine and Healthcare MEng 1 Optional A weighted aggregate mark of 40% is required to pass the module

Please note that the information detailed within this record is accurate at the time of publishing and may be subject to change. This record contains information for the most up to date version of the programme / module for the 2017/8 academic year.