HEAT TRANSFER AND LABORATORY - 2017/8

Module code: ENG2121

Module provider

Chemical and Process Engineering

Module Leader

LEE JY Dr (Chm Proc Eng)

Number of Credits

15

ECT Credits

7.5

Framework

FHEQ Level 5

JACs code

H311

Module cap (Maximum number of students)

N/A

Module Availability

Semester 1

Overall student workload

Lecture Hours: 22

Tutorial Hours: 10

Laboratory Hours: 20

Assessment pattern

Assessment type Unit of assessment Weighting
Examination EXAMINATION (2 HOURS) 55
School-timetabled exam/test IN-SEMESTER TEST: HEAT TRANSFER 10
Coursework LABORATORY 35

Alternative Assessment

N/A 

Prerequisites / Co-requisites

Completion of the progression requirements to FHEQ Level 5 of the degree courses in Chemical Engineering, Chemical and Bio-Systems Engineering and Chemical and Petroleum Engineering, or equivalent.

Module overview

Heat Transfer: Knowledge of heat transfer is vital for Chemical Engineers. In order to effectively design and operate many unit operations, such as heat exchangers and reactors, a sound understanding of the fundamentals of heat transfer is required. This part of the module is intended to introduce students to the basic mechanisms of heat transfer and to allow them to apply this understanding to the design of heat exchangers.

The laboratory element extends upon the skills developed in FHEQ Level 4 of the degree programmes, with particular attention to investigations that demonstrate and reinforce concepts of several FHEQ Level 5 modules.

Module aims

Familiarise students with the mechanisms of heat transfer and with the basic approach to solving steady state and transient heat transfer problems

Teach performance and design calculation methods for a range of heat exchanger types.

Introduce heat flux calculations for conduction, convection and radiation transfer mechanisms

Analyse heat transfer in pipe flow

Develop the practical skills necessary for problem solving, analysis, and technical dissemination through laboratory experimentation.

Further underpin the many theoretical aspects of the degree programmes through practical experimentation.

Learning outcomes

Attributes Developed
Describe the different mechanisms of heat transfer KC
Develop and solve mathematical models describing conductive, convective and radiative heat transfer in different geometries KC
Design and rate multiple configurations of heat exchanger KCP
Appraise the parameters that influence overall heat transfer coefficients, and determine the same from suitable correlations KCP
Record, analyse and present experimental data from small-scale laboratory equipment that depict a range of chemical engineering plant / operations. CPT
Operate small-scale laboratory equipment P
Plan experiments to solve Chemical Engineering problems and / or validate theoretical concepts underlying Chemical Engineering operations. KCPT
Recognise the safety and legal processes involved in performing laboratory experiments. KP

Attributes Developed

C - Cognitive/analytical

K - Subject knowledge

T - Transferable skills

P - Professional/Practical skills

Module content

Indicative content includes:

Heat Transfer

Introduction to Heat Transfer


Temperature driving force
Setting up and solving simple transient problems


Heat Exchanger Design


Log mean temperature concept - parallel and cross flow
Heat capacity rates, NTU, heat exchanger efficiency
Correction factor method
Overall and film heat transfer coefficients, fouling.
Concept of thermal resistance and electrical analogue


Heat Transfer Mechanisms


Steady state heat conduction, Fourier’s law
Conduction through cylindrical layers, critical lagging thickness
Convection mechanisms, boundary layer theory
Unconfined and confined flow. Entrance lengths
Dimensionless numbers and HTC correlations
Pipe flow – constant surface temperature and constant heat flux
Radiation - mechanisms, total enclosure, basic radiation exchange calculations


Laboratory

Investigations involving a range of experimental apparatus and associated analytical equipment, including: a heat exchanger; cooling tower; solids drying apparatus; process control simulator.

Methods of Teaching / Learning

The learning and teaching strategy is designed to:


Present the fundamental material in lectures in the context of industrially relevant examples
Allow students to practice the techniques developed in lectures through extensive tutorial examples. The solution of these problems will involve both guided study in tutorial sessions and independent study.
Provide the students with basic guidance on the laboratory task with the support resources to facilitate creative and critical thinking and an explorative approach to the work.
Provide students with repetitive practice and feedback on report dissemination.


The learning and teaching methods include:


Lectures – 2 hours per week for 11 weeks
Tutorials – 1 hour per week for 11 weeks
Laboratory work                     12 hours laboratory classes in 2 hour sessions
Guided work                          12 hours guided work in support of the labs (2 hours per lab)
Independent learning – 6.8 hours per week for 12 weeks

Assessment Strategy

The assessment strategy is designed to provide students with the opportunity to demonstrate successful attainment of the full range of learning outcomes covered in lectures and practised in tutorial classes. Where appropriate, the assessments will reflect industrially relevant systems.

 Thus, the summative assessment for this module consists of:


Examination – 55%, 2 hours (LO1 – LO4)
Coursework (Laboratory) - 35%, comprising of: a Full Investigation Report (15%), a Short Investigation Report (8%) and 3 Results and Executive Summary Reports (3x4%), with the inclusion of additional dissemination elements such as verbal presentations and proposals for new operational / briefing guides. (LO5 – LO8)
In-Semester Test (Heat Transfer)– 10%. Combination of questions addressing fundamental knowledge (LO1, LO2) with open ended design calculations (LO3). Deadline week 8


Formative assessment

Students will receive formative assessment via a series of randomised multiple choice tests on SurreyLearn.

 Feedback


Weekly verbal feedback during tutorial classes (LO1 – LO4)
Verbal feedback during optional drop-in tutorial classes (LO1 – LO4)
Written feedback on Coursework with full worked solutions published on SurreyLearn (LO1 – LO4)
Written and verbal feedback on Coursework (LO5 – LO8)
Demonstrator feedback on equipment operational matters during the course of the laboratory work (LO5, LO6)

Reading list

Reading list for HEAT TRANSFER AND LABORATORY : http://aspire.surrey.ac.uk/modules/eng2121

Programmes this module appears in

Programme Semester Classification Qualifying conditions
Chemical and Petroleum Engineering BEng (Hons) 1 Compulsory A weighted aggregate mark of 40% is required to pass the module
Chemical and Petroleum Engineering MEng 1 Compulsory A weighted aggregate mark of 40% is required to pass the module
Chemical Engineering BEng (Hons) 1 Compulsory A weighted aggregate mark of 40% is required to pass the module
Chemical Engineering MEng 1 Compulsory A weighted aggregate mark of 40% is required to pass the module

Please note that the information detailed within this record is accurate at the time of publishing and may be subject to change. This record contains information for the most up to date version of the programme / module for the 2017/8 academic year.