FROM ATOMS TO LASERS - 2017/8

Module code: PHY2062

Module provider

Physics

Module Leader

CLOWES SK Dr (Physics)

Number of Credits

15

ECT Credits

7.5

Framework

FHEQ Level 5

JACs code

F300

Module cap (Maximum number of students)

N/A

Module Availability

Semester 2

Overall student workload

Independent Study Hours: 84

Lecture Hours: 22

Tutorial Hours: 11

Laboratory Hours: 20

Assessment pattern

Assessment type Unit of assessment Weighting
Examination EXAMINATION 60
Practical based assessment LABORATORY DIARY AND REPORT/PRESENTATION 30
School-timetabled exam/test IN SEMESTER TEST (MULTIPLE CHOICE) 10

Alternative Assessment

The laboratory Diary and Report/Presentation Mark may be assessed by a condensed programme of laboratory work, with written laboratory report/presentation.

Prerequisites / Co-requisites

Module overview

This module will build on the rudimentary knowledge of Atoms and Quanta taught in Level FHEQ 4 (PHY1039) and apply the ideas taught in the previous Quantum Physics module (PHY2069) to describe the properties of atoms, including the physics behind the full structure of atomic spectra. It will introduce the effects on atoms due to electric and magnetic fields. The physics of diatomic molecules will be discussed, including how spectroscopic techniques can be used to study more complex molecules. Finally by understanding how atoms interact with light, the module will introduce the principles of the laser, including basic explanations of common lasers, such as the argon ion and He:Ne lasers.

The module includes a laboratory component in which ideas from the lectures will be explored experimentally.

Module aims

develop an understanding of the limitations of the Bohr model and develop the concepts that relates the atom's angular momentum with its optical and magnetic properties. The interactions within the atom will be discussed, as well as the effect on it due to external influences. These concepts will be developed further to include inter-atomic interactions and molecular spectroscopy. Finally, the module will introduce the laser and discuss the fundamental principles of its operation and applications.

Learning outcomes

Attributes Developed
Identify the origin of the structure of atomic spectra and explain the associated interactions which give rise to this structure. K
Describe the angular momentum of atoms and how it relates to their optical and magnetic properties K
Distinguish between effects of magnetic and electric fields on atoms KC
Determine the ground state of multi-electron atoms and explain the interaction governing this. KC
Apply their knowledge of diatomic molecules to perform simple analysis of spectroscopic data. KC
Describe the basic operation a laser and the conditions for lasing K
Compare the properties of various laser types KC
Demonstrate ability at related experimental techniques P

Attributes Developed

C - Cognitive/analytical

K - Subject knowledge

T - Transferable skills

P - Professional/Practical skills

Module content

Lectures include:

Principles of Spectroscopy and the Bohr Model.

Hydrogen like atoms, Rydberg atoms & hydrogren like atoms in the solid state.

Lifting of the orbitak degeneracy in alkali atoms.

Orbital and spin magnetic moments.

Fine structure and spin-orbit coupling, Lamb shift.

Atoms in magnetic fields – electron spin resonance, ordinary Zeeman effect, anomalous Zeeman effect, Lande g-factor, Paschen Back effect

Atoms in electric fields – the Stark effect

Einstein coeffiecients, Einstein’s derivation of Planck’s formula, Kircoff’s relation

Lifetimes, oscillator strength, homogeneous and inhomogeneous broadening

Selection rules, matrix elements and symmetry

Multielectron atoms, the helium atom

The exchange (spin-spin) interaction

j.j coupling

Structure of the periodic table

Ground state of multi-electron atoms,Hund’s rules

Nuclear spin and magnetic moment, hyperfine interaction, quantum numbers F and I

Brief overview of diatomic molecules, Born-Oppenheimer Approximation, vivrational and rotational molecular transitions, Raman scattering and IR spectroscopy

The laser, basic concepts, rate equations and lasing conditions, operation of types of lasers (ruby, He:Ne: molecular, dye, and semiconductor), laser linewidths, cavity modes and saturation spectroscopy

 

Laboratory

The laboratory component of the course includes experiments from: Fine structure, Optical pumping of Rb, Precession, Semiconductor Lasers and resolving power.

 

Methods of Teaching / Learning

The learning and teaching strategy is designed to:



equip students with subject knowledge


develop skills in applying subject knowledge to physical situations


enable students to tackle unseen problems in atomic and laser physics


develop students' practical skills


develop students' report-writing skills



 

The learning and teaching methods include:



33h of lectures and tutorials as 3h/week over 11 weeks.The lectures and tutorials involve use of an electronic voting system


20h of laboratory work distributed through the semester



 

Assessment Strategy

The assessment strategy is designed to provide students with the opportunity to demonstrate

their practical laboratory skills, their abilities to analyse data and draw conclusions from it, their skills in communicating scientific information, their problem-solving abilities, and their understanding of fundamental concepts and theory relating to all forms of matter.

 

Thus, the summative assessment for this module consists of:



1.5h end of semester examination, with 2 questions out of 3 to be answered


A mid semester multiple choice test


Laboratory diaries (every 2 weeks)


Laboratory poster presentation or short report

 

Formative assessment and feedback



The module includes approx. “Poll Everywhere” is used to employ peer leaning tecnhiques during lectures,providing instant feedback. Problems questions are provided each week and verbal feedback is provided by the discussion of these problems in tutorial sessions. Formative feedback provided on mid-semester test. Students are interviewed by an academic after each laboratory experiment providing both verbal and written feedback on their lab diaries.

 

 

Reading list

Reading list for FROM ATOMS TO LASERS : http://aspire.surrey.ac.uk/modules/phy2062

Programmes this module appears in

Programme Semester Classification Qualifying conditions
Physics BSc (Hons) 2 Compulsory A weighted aggregate mark of 40% is required to pass the module
Physics with Nuclear Astrophysics BSc (Hons) 2 Compulsory A weighted aggregate mark of 40% is required to pass the module
Physics with Quantum Technologies BSc (Hons) 2 Compulsory A weighted aggregate mark of 40% is required to pass the module
Physics MPhys 2 Compulsory A weighted aggregate mark of 40% is required to pass the module
Physics with Quantum Technologies MPhys 2 Compulsory A weighted aggregate mark of 40% is required to pass the module
Physics with Nuclear Astrophysics MPhys 2 Compulsory A weighted aggregate mark of 40% is required to pass the module
Physics with Astronomy BSc (Hons) 2 Compulsory A weighted aggregate mark of 40% is required to pass the module
Physics with Astronomy MPhys 2 Compulsory A weighted aggregate mark of 40% is required to pass the module
Liberal Arts and Sciences BA (Hons)/BSc (Hons) 2 Optional A weighted aggregate mark of 40% is required to pass the module

Please note that the information detailed within this record is accurate at the time of publishing and may be subject to change. This record contains information for the most up to date version of the programme / module for the 2017/8 academic year.