SPECIAL RELATIVITY - 2017/8

Module code: PHY3038

Module provider

Physics

Module Leader

STEVENSON PD Dr (Physics)

Number of Credits

15

ECT Credits

7.5

Framework

FHEQ Level 6

JACs code

F300

Module cap (Maximum number of students)

N/A

Module Availability

Semester 1

Overall student workload

Independent Study Hours: 117

Lecture Hours: 33

Assessment pattern

Assessment type Unit of assessment Weighting
Coursework COURSEWORK ASSIGNMENT 30%
Examination END OF SEMESTER 1.5HR EXAMINATION 70%

Alternative Assessment

None.

Prerequisites / Co-requisites

None.

Module overview

An FHEQ Level 6 course on Einstein’s theory of Special Relativity in a rigorous four vector and tensor approach. Postulates and principles are reviewed. The course then develops relativistic dynamics of point-particles and the relativistic treatment of electromagnetic and electrodynamics phenomena

Module aims

develop the theory and conceptual understanding of special relativity and space-time from first principles, using four-vector and tensor notations, providing applications of the theory from the dynamics of point particles through to electrodynamic phenomena.

Learning outcomes

Attributes Developed
Define and use four-vectors and the accompanying mathematical machinery that accompany them, including deriving invariants and using tensors. K
Apply the principles of Special Relativity to an extended range of problems involving particle dynamics and wave-like phenomena. C
Understand how electromagnetism and electrodynamics are developed from a relativistic point of view, and be able to manipulate the Maxwell Equations in four-space, and understand the use of retarded and advanced potentials KC
Describe and explain concepts relating to the consequences of Special Relativity, the nature of space-time and related observables

Attributes Developed

C - Cognitive/analytical

K - Subject knowledge

T - Transferable skills

P - Professional/Practical skills

Module content


Fundamentals The necessity for special relativity, the postulates, review of definitions, including inertial frames, clocks, spacetime, events and coordinates, spacetime intervals, proper time.
Mathematical Notation Four-vectors, covariant and contravariant quantities and transformation rules, Lorentz boosts, invariants, tensors.
Relativistic Mechanics Transformation of four-vectors.  Lorentz contraction. Time dilation.  Use of proper time, transformation of velocities.  The four-velocity, and four-momentum and related invariants.  Forces and acceleration. Equations of motion.
Electrodynamics The relativistic invariance of the Maxwell equations.  Representation of E and B fields in relativistic form.  The current four-vector.  The Lorentz force.  The electromagnetic potentials A and ɸ
Gauges;  The Coulomb gauge;  retarded and advanced potentials

Methods of Teaching / Learning

The learning and teaching strategy is designed to:

Enable students to understand the physics concepts involved in Special Relativity, how they interlink with Electromagnetism, and to equip students with the formal methods necessary to enable them to tackle a wide range of applications and problems in Special Relativity and guide further study.

 

The learning and teaching methods include:



3 hours of lectures/tutorials per week x 11 weeks.  Problem sets will be issued throughout the course to give practice at problem-solving.


Assessment Strategy

The assessment strategy is designed to provide students with the opportunity to demonstrate



understanding of the concepts of Special Relativity;  the ability to apply these concepts to problems in the physics of particle and wave mechanics; an understanding of the links between Special Relativity and Electromagnetism; the ability to tackle problems linking these two areas.

 

Thus, the summative assessment for this module consists of:

• Coursework; a written report on a conceptual aspect of Special Relativity; 30%, 1000 words (addresses learning outcome 4)

• Exam, 70%, 1.5 hours (addresses learning outcomes 1, 2, 3, and 4)

 

Formative assessment

Problem sets are issued during the course, and some of the class time (1h in even weeks) will be devoted to problem-solving tutorials.

 

Feedback

Students will receive detailed feedback on the coursework assignment;  oral feedback is given in tutorial sessions on the problem sets.  One problem set will be marked and returned as a kind of mock exam paper.


Reading list

Reading list for SPECIAL RELATIVITY : http://aspire.surrey.ac.uk/modules/phy3038

Please note that the information detailed within this record is accurate at the time of publishing and may be subject to change. This record contains information for the most up to date version of the programme / module for the 2017/8 academic year.