Module code: PHYM054

Module provider


Module Leader

PANI S Dr (Physics)

Number of Credits


ECT Credits



FHEQ Level 7

JACs code


Module cap (Maximum number of students)


Module Availability

Semester 1

Overall student workload

Independent Study Hours: 96

Lecture Hours: 15

Laboratory Hours: 39

Assessment pattern

Assessment type Unit of assessment Weighting
Project (Group/Individual/Dissertation) MOCK RESEARCH PROPOSAL (1500 WORDS) 34
Practical based assessment LAB REPORT 1 (2000 WORDS) 33
Practical based assessment LAB REPORT 2 (2000 WORDS) 33

Alternative Assessment


Prerequisites / Co-requisites


Module overview

The module will provide students with practical skills and background knowledge needed to work in a clinical setting. It includes two seminars/workshop on research ethics and intellectual property and a set of radiation laboratory experiments.

Module aims

Provide the student with an understanding of research ethics and intellectual property management.

Provide the student with the comprehensive understanding of the experimental use of radioactive materials, radiation counting, spectroscopy equipment, dosimetry measurements and standard radiation experimental techniques.

Learning outcomes

Attributes Developed
Achieve a systematic understanding of the fundamental processes involved with the interaction of X- and gamma-ray photons, charged particles and neutrons with matter KC
Critically analyse and perform self-directed problem solving of the practical aspects of handling radioactive substances KPT
Gain ability to extract qualitative and quantitative information about the emitted radiations CPT
Understand basic evaluation of experimental data using standard statistical methods CPT
Confidently and safely handle radioactive materials PT
Critically apply statistical analysis techniques to specialised radiometric data through appropriate software tools KPT
Apply theory to the measurement of various radiation emissions in terms of both dosimetry and spectroscopy KT
Maintain a laboratory diary at a level appropriate of a professional scientist PT
Provide concise and accurate reporting of findings, including limitations resulting from an appreciation of equipment capability and the availability of calibration standards PT
Understand the principles of research ethics and intellectual property and their application to a practical context PT

Attributes Developed

C - Cognitive/analytical

K - Subject knowledge

T - Transferable skills

P - Professional/Practical skills

Module content

Indicative content includes:

Seminar/workshop on intellectual property and research ethics.

Lectures on the NHS and on electrical safety.

Lectures on data handling and report writing skills.

Scripted experiments that students undertake in pairs, one per week.  Students undertake 6 one-week experiments. Experiments include alpha, beta and gamma spectroscopy, radiation survey and decontamination, dosimetry, X-ray fluorescence.


Methods of Teaching / Learning

The learning and teaching strategy is designed to:

Expose the students to the implications of research ethics in the context of the National Healthcare Service and medical research with humans/animals through academic-led group discussion of ethical dilemmas.

Allow them to gain practical experience in the handling of laboratory equipment and radioactive sources and relate experiments to the theory seen in lectures.


The learning and teaching methods include:

Lectures on statistical methods and report writing skills (6 hours)
Lectures on the NHS and on electrical safety (3 hours)
Seminar on Intellectual Property (3 hours)
Workshop on Research Ethics (3 hours)
Six scripted experiments, to be carried out in pairs in twelve 3-hour sessions (two sessions/experiment).


Assessment Strategy

The assessment strategy is designed to provide students with the opportunity to demonstrate their awareness of research ethics and intellectual property protection as well as their understanding of the functioning of spectroscopy chains and radiation detection processes.


Thus, the summative assessment for this module consists of:

One mock research proposal (2000 words), to be submitted typically in week 9.

Two laboratory reports (2000 words), to be submitted typically in weeks 8 and 12.


Formative assessment

During the report writing session, students test their understanding of the correct structure for a lab report by working in group on scoring reports from previous year.



Verbal feedback will be given regularly during the sessions. The written feedback from the first laboratory report will inform the submission of the second report.


Reading list

Reading list for EXPERIMENTAL AND PROFESSIONAL SKILLS FOR MEDICAL PHYSICS : http://aspire.surrey.ac.uk/modules/phym054

Programmes this module appears in

Programme Semester Classification Qualifying conditions
Medical Physics MSc 1 Compulsory A weighted aggregate mark of 50% is required to pass the module
Physics MSc 1 Optional A weighted aggregate mark of 50% is required to pass the module

Please note that the information detailed within this record is accurate at the time of publishing and may be subject to change. This record contains information for the most up to date version of the programme / module for the 2017/8 academic year.